Interdomain association in fibronectin: insight into cryptic sites and fibrillogenesis.
نویسندگان
چکیده
The process by which fibronectin (FN), a soluble multidomain protein found in tissue fluids, forms insoluble fibrillar networks in the extracellular matrix is poorly understood. Cryptic sites found in FN type III domains have been hypothesized to function as nucleation points, thereby initiating fibrillogenesis. Exposure of these sites could occur upon tension-mediated mechanical rearrangement of type III domains. Here, we present the solution structures of the second type III domain of human FN ((2)FNIII), and that of an interaction complex between the first two type III domains ((1-2)FNIII). The two domains are connected through a long linker, flexible in solution. A weak but specific interdomain interaction maintains (1-2)FNIII in a closed conformation that associates weakly with the FN N-terminal 30 kDa fragment (FN30 kDa). Disruption of the interdomain interaction by amino-acid substitutions dramatically enhances association with FN30 kDa. Truncation analysis of (1-2)FNIII reveals that the interdomain linker is necessary for robust (1-2)FNIII-FN30 kDa interaction. We speculate on the importance of this interaction for FN function and present a possible mechanism by which tension could initiate fibrillogenesis.
منابع مشابه
SLLISWD sequence in the 10FNIII domain initiates fibronectin fibrillogenesis.
Fibronectin (FN) assembly into extracellular matrix is tightly regulated and essential to embryogenesis and wound healing. FN fibrillogenesis is initiated by cytoskeleton-derived tensional forces transmitted across transmembrane integrins onto RGD binding sequences within the tenth FN type III (10FNIII) domains. These forces unfold 10FNIII to expose cryptic FN assembly sites; however, a specifi...
متن کاملStructure and functional significance of mechanically unfolded fibronectin type III1 intermediates.
Fibronectin (FN) forms fibrillar networks coupling cells to the extracellular matrix. The formation of FN fibrils, fibrillogenesis, is a tightly regulated process involving the exposure of cryptic binding sites in individual FN type III (FN-III) repeats presumably exposed by mechanical tension. The FN-III1 module has been previously proposed to contain such cryptic sites that promote the assemb...
متن کاملStudying early stages of fibronectin fibrillogenesis in living cells by atomic force microscopy
Fibronectin (FN) is an extracellular matrix protein that can be assembled by cells into large fibrillar networks, but the dynamics of FN remodeling and the transition through intermediate fibrillar stages are still incompletely understood. Here we have used a combination of fluorescence microscopy and time-lapse atomic force microscopy (AFM) to visualize initial stages of FN fibrillogenesis in ...
متن کاملFibronectin binding site in type I collagen regulates fibronectin fibril formation
Mov13 fibroblasts, which do not express endogenous alpha 1(I) collagen chains due to a retroviral insertion, were used to study the role of type I collagen in the process of fibronectin fibrillogenesis. While Mov13 cells produced a sparse matrix containing short fibronectin fibrils, transfection with a wild type pro alpha 1(I) collagen gene resulted in the production of an extensive matrix cont...
متن کاملECM protein nanofibers and nanostructures engineered using surface-initiated assembly.
The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 26 10 شماره
صفحات -
تاریخ انتشار 2007